Best Proximity Point and Best Proximity Coupled Point in a Complete Metric Space with (P)-Property

Wasfi Shatanawi ${ }^{\text {a }}$, Ariana Pitea ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Hashemite University, Zarga , Jordan
${ }^{b}$ Department of Mathematics E Informatics, University Politehnica of Bucharest, Bucharest 060042, Romania

Abstract

In this paper, we utilize the concept of (P)-property, weak (P)-property and the comparison function to introduce and prove an existence and uniqueness theorem of a best proximity point. Also, we introduce the notion of a best proximity coupled point of a mapping $F: X \times X \rightarrow X$. Using this notion and the comparison function to prove an existence and uniqueness theorem of a best proximity coupled point. Our results extend and improve many existing results in the literature. Finally, we introduce examples to support our theorems.

1. Introduction

Let A be a nonempty subset of a metric space (X, d). Let T be a mapping from X into X. A point $x \in X$ is called a best proximity point of T if $d(x, T x)=d(A, x)$, where

$$
d(A, x):=\inf \{d(a, x): a \in A\}
$$

Note that if $x \in A$, then x is a fixed point of T. Thus the best proximity point plays a crucial role in fixed point theory, and many authors studied this notion. In [1], the existence of a best proximity point for a cyclic contraction map in a reflexive Banach space is proved. Also, the authors introduce a new class of mappings, the cyclic φ-contractions, and they prove convergence and existence results for those class of mappings. The notion of proximal pointwise contraction and results regarding the existence of a best proximity point on a pair of weakly compact convex subset of a Banach space are obtained in [2]. In [3], there are stated contraction type existence results for a best proximity point and an algorithm to find a best proximity point for a mapping in the context of a uniformly convex Banach space. In [4], there is introduced the notion of cyclic orbital Meir-Keeler contraction, and there are given sufficient conditions for the existence of fixed points and best proximity points of such a map. The proximity and best proximity pair theorems in hyperconvex metric spaces and in Hilbert spaces are presented in [5], providing optimal approximate solutions for the situation when a mapping does not have fixed points. Paper [6] applies a convergence theorem in order to prove the existence of a best proximity point, without the use of Zorns lemma. In [7], the authors study a mapping which satisfies a cyclical generalized contractive condition related to a

[^0]pair of altering distance functions. Paper [8] introduces the class of p-cyclic φ-contractions, larger than the p-cyclic contraction mappings and presents convergence and existence results of best proximity points for mappings from this class are obtained. In [9], Sankar Raj studied a fixed point theorem for weakly contractive nonselfmappings based on the notion of (P)-property. For some interesting examples of pairs having the (P)-property, we address the reader to [9], [10], [11]. For some work in almost contraction see [12]-[20].

In this paper, we introduce the notion of the generalized almost (φ, θ)-contraction and the notion of a best proximity coupled point of a mapping $F: X \times X \rightarrow X$. Also, we utilize our notions to introduce and prove a best proximity point theorem and a best proximity coupled point theorem. Our results extend and improve many existing results in literature.

2. Preliminaries

To introduce our new results, it is fundamental to recall the definition of a best proximity point of a nonselfmapping T and the notion of (weak) (P)-property.

Let A and B be nonempty subsets of a metric space. To facilitate the arguments let

$$
\begin{aligned}
& A_{0}=\{a \in A: d(a, b)=d(A, B), \text { for some } b \in B\}, \\
& B_{0}=\{b \in B: d(a, b)=d(A, B), \text { for some } a \in A\},
\end{aligned}
$$

and

$$
d(A, B):=\inf \{d(a, b): a \in A, b \in B\}
$$

Definition 2.1 ([10]). Let A and B be two nonempty subsets of a metric space (X, d). An element $u \in A$ is said to be a best proximity point of the nonselfmapping $T: A \rightarrow B$ iff it satisfies the condition

$$
d(u, T u)=d(A, B)
$$

Definition 2.2 ([9]). Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with $A_{0} \neq \varnothing$. Then, pair (A, B) is said to have the weak (P)-property if, for each $x_{1}, x_{2} \in A$, and $y_{1}, y_{2} \in B$, the following implication holds

$$
\binom{d\left(x_{1}, y_{1}\right)=d(A, B)}{d\left(x_{2}, y_{2}\right)=d(A, B)} \Rightarrow d\left(x_{1}, x_{2}\right) \leq d\left(y_{1}, y_{2}\right)
$$

If we replace relation $d\left(x_{1}, x_{2}\right) \leq d\left(y_{1}, y_{2}\right)$ by $d\left(x_{1}, x_{2}\right)=d\left(y_{1}, y_{2}\right)$ we obtain a less general notion, that of a pair endowed with the (P)-property.

In his elegant paper [10], Samet studied a nice best proximity point theorem of the form almost contraction for a pair of sets endowed with the (P)-property. Before we present the main result of Samet, we recall the following

Definition 2.3 ([13]). A map $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ is called a c-comparison function if it satisfies:

1. φ is a monotone increasing,
2. $\sum_{n=0}^{+\infty} \varphi^{n}(t)$ converges for all $t \geq 0$.

If we replace the second condition by $\lim _{n \rightarrow+\infty} \varphi^{n}(t)=0, \forall n \in \mathbb{N}$, we obtain the notion of comparison function, which is more general than the one of c-comparison function.

It is known that if φ is a comparison function, then $\varphi(t)<t$ for all $t>0$ and $\varphi(0)=0$.
Works involving either (c)-comparison functions or comparison functions are, for instance, [14] and [20].
In the following, denote $[0,+\infty) \times[0,+\infty) \times[0,+\infty) \times[0,+\infty)$ by $[0,+\infty)^{4}$.
Let Θ be the set of all continuous functions $\theta:[0,+\infty)^{4} \rightarrow[0,+\infty)$ such that

$$
\theta(0, t, s, u)=0 \text { for all } t, s, u \in[0,+\infty)
$$

and

$$
\theta(t, s, 0, u)=0 \text { for all } t, s, u \in[0,+\infty)
$$

Example 2.4 ([10]). Define $\theta_{1}, \theta_{2}, \theta_{3}:[0,+\infty)^{4} \rightarrow[0,+\infty)$ by the formulas

$$
\begin{array}{ll}
\theta_{1}(t, s, u, v)=\tau \inf \{t, s, u, v\}, & \tau>0 \\
\theta_{2}(t, s, u, v)=\tau \ln (1+t s u v), & \tau>0
\end{array}
$$

and

$$
\theta_{3}(t, s, u, v)=\tau t s u v, \quad \tau>0
$$

Then $\theta_{1}, \theta_{2}, \theta_{3} \in \Theta$.
Samet [10] introduced the following definition.
Definition 2.5 ([10]). Let φ be a c-comparison function, and $\theta \in \Theta$. A mapping $T: A \rightarrow B$ is called an almost (φ, θ)-contraction if, for each $x, y \in A$,

$$
\begin{gathered}
d(T x, T y) \leq \quad \varphi(d(x, y))+\theta(d(y, T x)-d(A, B), d(x, T y)-d(A, B) \\
d(x, T x)-d(A, B), d(y, T y)-d(A, B)) .
\end{gathered}
$$

The main result of Samet is
Theorem 2.6 ([10]). Let A and B two closed subsets of a complete metric space (X, d) such that A_{0} is nonempty. Suppose that $T: A \rightarrow B$ satisfies the following conditions:

1) T is an almost (φ, θ)-contraction;
2) $T A_{0} \subseteq B_{0}$;
3) Pair (A, B) has the P-property.

Then, there exists a unique element $x * \in A$ such that

$$
d\left(x^{*}, T x^{*}\right)=d(A, B)
$$

Moreover, for any fixed element $x_{0} \in A_{0}$, any iterative sequence $\left(x_{n}\right)$ satisfying

$$
d\left(x_{n+1}, T x_{n}\right)=d(A, B)
$$

converges to x^{*}.

3. Main Results

Our first aim in the paper is to introduce and prove a best proximity point theorem for a more general case. For this instance, we introduce the notion of a generalized almost (φ, θ)-contraction, as follows

Definition 3.1. Let φ be a comparison function, and $\theta \in \Theta$. Mapping $T: A \rightarrow B$ is called a generalized almost (φ, θ)-contraction if, for each $x, y \in A$,

$$
\begin{gathered}
d(T x, T y) \leq \quad \varphi(d(x, y))+\theta(d(y, T x)-d(A, B), d(x, T y)-d(A, B) \\
d(x, T x)-d(A, B), d(y, T y)-d(A, B)) .
\end{gathered}
$$

Our first result is
Theorem 3.2. Consider A and B two closed subsets of a complete metric space (X, d) for which A_{0} is nonempty. Let $T: A \rightarrow B$ be a mapping which satisfies the following conditions:

1) T is a generalized almost (φ, θ)-contraction;
2) $T A_{0} \subseteq B_{0}$;
3) Pair (A, B) has the weak P-property.

Then, there exists a unique best proximity point of $T, x^{*} \in A$.

Proof. Consider $x_{0} \in A_{0}$. Since $T A_{0} \subseteq B_{0}$, then $T x_{0} \in B_{0}$, and there is $x_{1} \in A_{0}$ such that $d\left(x_{1}, T x_{0}\right)=d(A, B)$. By continuing this procedure, we obtain a sequence $\left(x_{n}\right) \subseteq A_{0}$,

$$
d\left(x_{n+1}, T x_{n}\right)=d(A, B), \quad \forall n \in \mathbb{N} \cup\{0\} .
$$

If there is $n \in \mathbb{N} \cup\{0\}$, for which $d\left(x_{n+1}, x_{n}\right)=0$, it follows

$$
d(A, B) \leq d\left(x_{n}, T x_{n}\right) \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)=d\left(x_{n+1}, T x_{n}\right)=d(A, B)
$$

hence $d(A, B)=d\left(x_{n}, T x_{n}\right)$, so x_{n} is a best proximity point of T.
Without loss of generality, in the following we may assume that $d\left(x_{n}, x_{n+1}\right)>0$, for each $n \in \mathbb{N} \cup\{0\}$.
(A, B) satisfies the weak (P)-property, so $d\left(x_{n}, x_{n+1}\right) \leq d\left(T x_{n-1}, T x_{n}\right), n \in \mathbb{N}$.
Using the almost (φ, θ)-contraction property of T, we have

$$
\begin{aligned}
& d\left(x_{n}, x_{n+1}\right) \leq d\left(T x_{n-1}, T x_{n}\right) \\
\leq & \varphi\left(d\left(x_{n-1}, x_{n}\right)\right)+\theta\left(d\left(x_{n}, T x_{n-1}\right)-d(A, B), d\left(x_{n-1}, T x_{n}\right)-d(A, B),\right. \\
& \left.d\left(x_{n-1}, T x_{n-1}\right)-d(A, B), d\left(x_{n}, T x_{n}\right)-d(A, B)\right) \\
= & \varphi\left(d\left(x_{n-1}, x_{n}\right)\right)+\theta\left(0, d\left(x_{n-1}, T x_{n}\right)-d(A, B),\right. \\
& \left.d\left(x_{n-1}, T x_{n-1}\right)-d(A, B), d\left(x_{n}, T x_{n}\right)-d(A, B)\right) \\
= & \varphi\left(d\left(x_{n-1}, x_{n}\right)\right), \quad n \in \mathbb{N} \cup\{0\} .
\end{aligned}
$$

Applying repeatedly this inequality, and using the monotone of φ, we get

$$
d\left(x_{n}, x_{n+1}\right) \leq \varphi^{n}\left(d\left(x_{0}, x_{1}\right)\right), \quad n \in \mathbb{N} \cup\{0\} .
$$

But φ is a comparison function, so, taking $n \rightarrow+\infty$, we obtain $\lim _{n \rightarrow+\infty} d\left(x_{n}, x_{n+1}\right)=0$.
Taking into account the inequalities

$$
d(A, B) \leq d\left(x_{n}, T x_{n}\right) \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)
$$

and letting $n \rightarrow+\infty$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} d\left(x_{n}, T x_{n}\right)=d(A, B) . \tag{1}
\end{equation*}
$$

Let $\varepsilon>0$. Since $\lim _{n \rightarrow+\infty} d\left(x_{n}, x_{n+1}\right)$ there exists $n_{0} \in \mathbb{N}$ such that for each $n>n_{0}$, we have

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)<\frac{1}{2}(\varepsilon-\varphi(\varepsilon)) \tag{2}
\end{equation*}
$$

We shall prove that $d\left(x_{n}, x_{m}\right)<\varepsilon$, for each $m>n>n_{0}$ by induction on m.
For $m=n+1$, we obtain

$$
d\left(x_{n}, x_{n+1}\right)<\frac{1}{2}(\varepsilon-\varphi(\varepsilon))<\varepsilon .
$$

Suppose the inequality is satisfied for $m=k$, and we shall prove that the relation holds for $m=k+1$. The triangular inequality leads us to

$$
\begin{equation*}
d\left(x_{n}, x_{k+1}\right) \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{k+1}\right) . \tag{3}
\end{equation*}
$$

Since $d\left(x_{n+1}, T x_{n}\right)=d(A, B)$, and $d\left(x_{k+1}, T x_{k}\right)=d(A, B)$, applying the weak (P)-property, it follows that $d\left(x_{n+1}, x_{k+1}\right) \leq d\left(T x_{n}, T x_{k}\right)$. The almost (φ, θ)-contraction property of T, we obtain

$$
\begin{align*}
& d\left(x_{n+1}, x_{k+1}\right) \leq d\left(T x_{n}, T x_{k}\right) \\
& \leq \quad \varphi\left(d\left(x_{n}, x_{k}\right)\right)+\theta\left(d\left(x_{k}, T x_{n}\right)-d(A, B), d\left(x_{n}, T x_{k}\right)-d(A, B),\right. \tag{4}\\
&\left.d\left(x_{n}, T x_{n}\right)-d(A, B), d\left(x_{k}, T x_{k}\right)-d(A, B)\right)
\end{align*}
$$

Since θ is a continuous function and $\lim _{n \rightarrow+\infty} d\left(x_{n}, T x_{n}\right)=d(A, B)$, we have

$$
\begin{aligned}
\limsup _{n \rightarrow+\infty} & \theta\left(d\left(x_{k}, T x_{n}\right)-d(A, B), d\left(x_{n}, T x_{k}\right)-d(A, B)\right. \\
& \left.d\left(x_{n}, T x_{n}\right)-d(A, B), d\left(x_{k}, T x_{k}\right)-d(A, B)\right)=0 .
\end{aligned}
$$

Thus, we may consider that n_{0} is large enough so for each $n>n_{0}$,

$$
\begin{align*}
& \theta\left(d\left(x_{k}, T x_{n}\right)-d(A, B), d\left(x_{n}, T x_{k}\right)-d(A, B)\right. \tag{5}\\
& \left.d\left(x_{n}, T x_{n}\right)-d(A, B), d\left(x_{k}, T x_{k}\right)-d(A, B)\right)<\frac{1}{2}(\varepsilon-\varphi(\varepsilon))
\end{align*}
$$

Using inequalities (2), (4), and (5) into (3), we get

$$
d\left(x_{n}, x_{k+1}\right) \leq \frac{1}{2}(\varepsilon-\varphi(\varepsilon))+\varphi(\varepsilon)+\frac{1}{2}(\varepsilon-\varphi(\varepsilon))
$$

hence $d\left(x_{n}, x_{k+1}\right)<\varepsilon$, and we proved that $d\left(x_{n}, x_{m}\right)<\varepsilon, m>n>n_{0}$. We got that $\left(x_{n}\right)$ is a Cauchy sequence in A, which is a closed subset of (X, d), a complete metric space. Therefore, there exists $x \in A$ such that $\lim _{n \rightarrow+\infty} x_{n}=x^{*}$.

Using the triangle inequality, it follows

$$
\begin{equation*}
d\left(x^{*}, T x^{*}\right) \leq d\left(x^{*}, x_{n}\right)+d\left(x_{n}, T x_{n}\right)+d\left(T x^{*}, T x_{n}\right) \tag{6}
\end{equation*}
$$

Letting $n \rightarrow+\infty$ in the inequality

$$
\begin{array}{r}
d\left(T x^{*}, T x_{n}\right) \leq \varphi\left(d\left(x^{*}, x_{n}\right)\right)+\theta\left(d\left(x_{n}, T x^{*}\right)-d(A, B), d\left(x^{*}, T x_{n}\right)-d(A, B)\right. \\
\left.d\left(x_{n}, T x_{n}\right)-d(A, B), d\left(x^{*}, T x^{*}\right)-d(A, B)\right),
\end{array}
$$

it follows $\lim _{n \rightarrow+\infty} d\left(T x_{n}, T x^{*}\right)=0$. Taking $n \rightarrow+\infty$ in relation (6), it follows that $d\left(x^{*}, T x^{*}\right)=d(A, B)$, so x^{*} is a best proximity point of T.

We shall focus now on the uniqueness of the best proximity point of T. Suppose there are $x^{*} \neq y^{*}$ two best proximity points of T. We obtain

$$
\begin{aligned}
d\left(x^{*}, y^{*}\right) & \leq d\left(T x^{*}, T y^{*}\right) \\
\leq & \varphi\left(d\left(x^{*}, y^{*}\right)\right)+\theta\left(d\left(y^{*}, T x^{*}\right)-d(A, B), d\left(x^{*}, T y^{*}\right)-d(A, B),\right. \\
& \left.\quad d\left(x^{*}, T x^{*}\right)-d(A, B), d\left(y^{*}, T y^{*}\right)-d(A, B)\right) \\
& =\varphi\left(d\left(x^{*}, y^{*}\right)\right)+\theta\left(d\left(y^{*}, T x^{*}\right)-d(A, B), d\left(x^{*}, T y^{*}\right)-d(A, B),\right. \\
& \left.0, d\left(y^{*}, T y^{*}\right)-d(A, B)\right) \\
& \varphi\left(d\left(x^{*}, y^{*}\right)\right),
\end{aligned}
$$

which is impossible, since $x^{*} \neq y^{*}$. The uniqueness part has been proved now.
Let us take the particular case of $\varphi:[0,+\infty) \rightarrow[0,+\infty), \varphi(t)=k t$, where $k \in[0,1)$, and

$$
\theta:[0,+\infty)^{4} \rightarrow[0,+\infty), \quad \theta\left(t_{1}, t_{2}, t, 3, t_{4}\right)=L \min \left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}
$$

for some $L \geq 0$. We obtain the following corollary.
Corollary 3.3. Let A and B be two closed subsets of a complete metric space (X, d) for which A_{0} is nonempty. Let $T: A \rightarrow B$ be a mapping which satisfies the following conditions:

1) $T A_{0} \subseteq B_{0}$;
2) Pair (A, B) has the weak (P)-property.

Suppose there exist $k \in[0,1)$ and $L \geq 0$ such that

$$
\begin{gathered}
d(T x, T y) \leq \quad k d(x, y)+L \min \{d(y, T x)-d(A, B), d(x, T y)-d(A, B) \\
d(x, T x)-d(A, B), d(y, T y)-d(A, B)\}
\end{gathered}
$$

holds for all $x, y \in A$. Then, there exists a unique best proximity point of $T, x^{*} \in A$.

By considering $A=B$ in Theorem 3.2, we get the next corollary
Corollary 3.4. Let A be a closed subsets of a complete metric space (X, d). Let $T: A \rightarrow A$ be a mapping such that

$$
d(T x, T y) \leq \varphi(d(x, y))+\theta(d(y, T x), d(x, T y), d(x, T x), d(y, T y))
$$

holds for all $x, y \in A$. Then T has a unique fixed point $u \in A$; that is $T u=u$.
Our second aim in this paper is to present a best proximity coupled point of a mapping $T: X \times X \rightarrow X$. Before we present our second result we introduce the following definition.

Definition 3.5. Let A and B be closed subsets of a metric space (X, d). An element $(u, v) \in X \times X$ is called a best proximity coupled point of a mapping $F: X \times X \rightarrow X$ if $u \in A, v \in B$ and $d(u, F(u, v))=d(A, B)$ and $d(v, F(v, u))=d(A, B)$.

Theorem 3.6. Let A and B be two closed subsets of a complete metric space (X, d) for which A_{0} and B_{0} are nonempty. Let $F: X \times X \rightarrow X$ be a continuous mapping which satisfies the following conditions:

1) $F\left(A_{0} \times B_{0}\right) \subseteq B_{0}$;
2) $F\left(B_{0} \times A_{0}\right) \subseteq A_{0}$;
3) Pair (A, B) has the (P-property.

Also, suppose there exist functions φ and $\theta \in \Theta$ such that

$$
\begin{align*}
& d(F(x, y), F(u, v)) \\
\leq \quad & \varphi(\max \{d(x, u), d(y, v)\})+\theta(d(u, F(x, y))-d(A, B), d(v, F(y, x))-d(A, B), \\
& d(x, F(x, y))-d(A, B), d(y, F(y, x))-d(A, B)) \tag{7}
\end{align*}
$$

holds for all $x, y, u, v \in X$.
Then, there exists a unique best proximity coupled point of F of the form (u, u).
Proof. Choose $x_{0} \in A_{0}$ and $y_{0} \in B_{0}$. Since $F\left(x_{0}, y_{0}\right) \in B_{0}$, we choose $x_{1} \in A$ such that $d\left(x_{1}, F\left(x_{0}, y_{0}\right)\right)=d(A, B)$. Also, since $F\left(y_{0}, x_{0}\right) \in A_{0}$ we choose $y_{1} \in B$ such that $d\left(y_{1}, F\left(y_{0}, x_{0}\right)\right)=d(B, A)$. As $F\left(x_{1}, y_{1}\right) \in B_{0}$, we choose $x_{2} \in A$ such that $d\left(x_{2}, F\left(x_{1}, y_{1}\right)\right)=d(A, B)$. Also, since $F\left(y_{1}, x_{1}\right) \in A_{0}$ we choose $y_{2} \in B$ such that $d\left(y_{2}, F\left(y_{1}, x_{1}\right)\right)=d(B, A)$. Continuing this process, we construct two sequences $\left(x_{n}\right)$ in A and $\left(y_{n}\right)$ in B such that

$$
d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right)=d(A, B)
$$

and

$$
d\left(y_{n+1}, F\left(y_{n}, x_{n}\right)\right)=d(B, A)
$$

hold for all $n \in \mathbb{N} \cup\{0\}$.
Suppose there exists $n \in \mathbb{N}$ such that $d\left(x_{n}, x_{n+1}\right)=0$ and $d\left(y_{n}, y_{n+1}\right)=0$. Thus

$$
\begin{aligned}
d(A, B) & \leq d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right) \\
& \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right) \\
& =d(A, B)
\end{aligned}
$$

Thus we have $d(A, B)=d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right)$. Similarly, we obtain $d(A, B)=d\left(y_{n}, F\left(y_{n}, x_{n}\right)\right)$. Therefore, $\left(x_{n}, y_{n}\right)$ is a best proximity coupled point of F.

So, we may assume that $d\left(x_{n}, x_{n+1}\right)>0$ or $d\left(y_{n}, y_{n+1}\right)>0$.
Since pair (A, B) has the (P)-property, $d\left(x_{n}, F\left(x_{n-1}, y_{n-1}\right)\right)=d(A, B)$, and $d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right)=d(A, B)$, we have

$$
d\left(x_{n}, x_{n+1}\right)=d\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right)
$$

By (7), we obtain

$$
\begin{align*}
& d\left(x_{n}, x_{n+1}\right) \\
= & d\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) \\
\leq & \varphi\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(y_{n-1}, y_{n}\right)\right\}+\theta\left(d\left(x_{n}, F\left(x_{n-1}, y_{n-1}\right)\right)-d(A, B),\right.\right. \\
& d\left(y_{n}, F\left(y_{n-1}, x_{n-1}\right)\right)-d(A, B), d\left(x_{n-1}, F\left(x_{n-1}, y_{n-1}\right)\right)-d(A, B), \\
& \left.d\left(y_{n-1}, F\left(y_{n-1}, x_{n-1}\right)\right)-d(A, B)\right) \\
= & \varphi\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(y_{n-1}, y_{n}\right)\right\} .\right. \tag{8}
\end{align*}
$$

Also, since pair (A, B) has the (P)-property, $d\left(y_{n}, F\left(y_{n-1}, x_{n-1}\right)\right)=d(A, B)$, and $d\left(y_{n+1}, F\left(y_{n}, x_{n}\right)\right)=d(A, B)$, we have

$$
d\left(y_{n}, y_{n+1}\right)=d\left(F\left(y_{n-1}, x_{n-1}\right), F\left(y_{n}, x_{n}\right)\right)
$$

Again by (7), we get

$$
\begin{align*}
& d\left(y_{n}, y_{n+1}\right) \\
= & d\left(F\left(y_{n-1}, x_{n-1}\right), F\left(y_{n}, x_{n}\right)\right) \\
\leq & \varphi\left(\max \left\{d\left(y_{n-1}, y_{n}\right), d\left(x_{n-1}, x_{n}\right)\right\}\right)+\theta\left(d\left(y_{n}, F\left(y_{n-1}, x_{n-1}\right)\right)-d(A, B),\right. \\
& d\left(x_{n}, F\left(x_{n-1}, y_{n-1}\right)\right)-d(A, B), d\left(y_{n-1}, F\left(y_{n-1}, x_{n-1}\right)\right)-d(A, B), \\
& \left.d\left(x_{n-1}, F\left(x_{n-1}, y_{n-1}\right)\right)-d(A, B)\right) \\
= & \varphi\left(\max \left\{d\left(y_{n-1}, y_{n}\right), d\left(x_{n-1}, x_{n}\right)\right\}\right) . \tag{9}
\end{align*}
$$

Combining (8) and (9), we get

$$
\begin{equation*}
\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(y_{n}, y_{n+1}\right)\right\} \leq \varphi\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(y_{n-1}, y_{n}\right)\right\}\right) \tag{10}
\end{equation*}
$$

Repeating (10) n-times, we obtain

$$
\begin{aligned}
\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(y_{n}, y_{n+1}\right)\right\} & \leq \varphi\left(\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(y_{n-1}, y_{n}\right)\right\}\right) \\
& \leq \varphi^{2}\left(\max \left\{d\left(x_{n-2}, x_{n-1}\right), d\left(y_{n-2}, y_{n-1}\right)\right\}\right) \\
& \vdots \\
& \leq \varphi^{n}\left(\max \left\{d\left(x_{0}, x_{1}\right), d\left(y_{0}, y_{1}\right)\right\}\right) .
\end{aligned}
$$

Thus

$$
\lim _{n \rightarrow+\infty} d\left(x_{n}, x_{n+1}\right)=\lim _{n \rightarrow+\infty} d\left(y_{n}, y_{n+1}\right)=0
$$

On other hand,

$$
\begin{aligned}
d(A, B) & \leq d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right) \\
& \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right) \\
& =d\left(x_{n}, x_{n+1}\right)+d(A, B)
\end{aligned}
$$

Letting $n \rightarrow+\infty$ in the above inequalities, we get

$$
\lim _{n \rightarrow+\infty} d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right)=d(A, B) .
$$

Similarly, one can show that

$$
\lim _{n \rightarrow+\infty} d\left(y_{n}, F\left(y_{n}, x_{n}\right)\right)=d(A, B) .
$$

Consider $\epsilon>0$. Since $\varphi^{n}\left(\max \left\{d\left(x_{0}, x_{1}\right), d\left(y_{0}, y_{1}\right)\right\} \rightarrow 0\right.$ as $n \rightarrow+\infty$, there exists $n_{0} \in \mathbb{N}$ such that

$$
d\left(x_{n}, x_{n+1}\right)<\frac{1}{2}(\epsilon-\varphi(\epsilon))
$$

and

$$
d\left(y_{n}, y_{n+1}\right)<\frac{1}{2}(\epsilon-\varphi(\epsilon))
$$

hold for all $n \geq n_{0}$.
Now, we use the induction on m to prove that

$$
\begin{equation*}
\max \left\{d\left(x_{n}, x_{m}\right), d\left(y_{n}, y_{m}\right)\right\}<\epsilon \forall m>n \geq n_{0} . \tag{11}
\end{equation*}
$$

Note that (11) holds for $m=n+1$ because $\max \left\{d\left(x_{n}, x_{m}\right), d\left(y_{n}, y_{m}\right)\right\}<\frac{1}{2}(\epsilon-\varphi(\epsilon))<\epsilon$ holds for all $n \geq n_{0}$. Assume inequality (11) holds for $m=k$. Now, we prove relation (11) for $m=k+1$. By using the triangular inequality, we have

$$
\begin{equation*}
d\left(x_{n}, x_{k+1}\right) \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{k+1}\right) . \tag{12}
\end{equation*}
$$

Since pair (A, B) has the (P)-property, $d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right)=d(A, B)$, and

$$
d\left(x_{k+1}, F\left(x_{k}, y_{k}\right)\right)=d(A, B)
$$

we have

$$
d\left(x_{n+1}, x_{k+1}\right) \leq d\left(F\left(x_{n}, y_{n}\right), F\left(x_{k}, y_{k}\right)\right)
$$

Using the contraction condition (7), we have

$$
\begin{align*}
& d\left(x_{n+1}, x_{k+1}\right) \\
= & d\left(F\left(x_{n}, y_{n}\right), F\left(x_{k}, y_{k}\right)\right) \\
\leq & \varphi\left(\max \left\{d\left(x_{n}, x_{k}\right), d\left(y_{n}, y_{k}\right)\right\}\right)+\theta\left(d\left(x_{k}, F\left(x_{n}, y_{n}\right)\right)-d(A, B),\right. \\
& \left.d\left(y_{k}, F\left(y_{n}, x_{n}\right)\right)-d(A, B), d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right)-d(A, B), d\left(y_{n}, F\left(y_{n}, x_{n}\right)\right)-d(A, B)\right), \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
& d\left(y_{n+1}, y_{k+1}\right) \\
= & d\left(F\left(y_{n}, x_{n}\right), F\left(y_{k}, x_{k}\right)\right) \\
\leq & \varphi\left(\max \left\{d\left(x_{n}, x_{k}\right), d\left(y_{n}, y_{k}\right)\right\}\right)+\theta\left(d\left(y_{k}, F\left(x_{n}, x_{n}\right)\right)-d(A, B),\right. \\
& \left.d\left(x_{k}, F\left(x_{n}, y_{n}\right)\right)-d(A, B), d\left(y_{n}, F\left(x_{n}, x_{n}\right)\right)-d(A, B), d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right)-d(A, B)\right), \tag{14}
\end{align*}
$$

Using the properties of θ, and the fact that $\lim _{n \rightarrow+\infty} d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right)=d(A, B)$, and $\lim _{n \rightarrow+\infty} d\left(y_{n}, F\left(y_{n}, x_{n}\right)\right)=$ $d(A, B)$ we have

$$
\begin{aligned}
& \limsup _{n \rightarrow+\infty} \theta\left(d\left(x_{k}, F\left(x_{n}, y_{n}\right)\right)-d(A, B), d\left(y_{k}, F\left(y_{n}, x_{n}\right)\right)-d(A, B),\right. \\
& \left.d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right)-d(A, B), d\left(y_{n}, F\left(y_{n}, x_{n}\right)\right)-d(A, B)\right)=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& \limsup _{n \rightarrow+\infty} \theta\left(d\left(y_{k}, F\left(y_{n}, x_{n}\right)\right)-d(A, B), d\left(x_{k}, F\left(x_{n}, y_{n}\right)\right)-d(A, B),\right. \\
& \left.d\left(y_{n}, F\left(y_{n}, x_{n}\right)\right)-d(A, B), d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right)-d(A, B)\right)=0,
\end{aligned}
$$

Thus for n_{0} large enough, we have

$$
\begin{align*}
& \theta\left(d\left(x_{k}, F\left(x_{n}, y_{n}\right)\right)-d(A, B), d\left(y_{k}, F\left(y_{n}, x_{n}\right)\right)-d(A, B)\right. \\
& \left.d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right)-d(A, B), d\left(y_{n}, F\left(y_{n}, x_{n}\right)\right)-d(A, B)\right)<\frac{1}{2}(\epsilon-\varphi(\epsilon)) . \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
& \theta\left(d\left(y_{k}, F\left(y_{n}, x_{n}\right)\right)-d(A, B), d\left(x_{k}, F\left(x_{n}, y_{n}\right)\right)-d(A, B)\right. \\
& \left.d\left(y_{n}, F\left(y_{n}, x_{n}\right)\right)-d(A, B), d\left(x_{n}, F\left(x_{n}, y_{n}\right)\right)-d(A, B)\right)<\frac{1}{2}(\epsilon-\varphi(\epsilon)) . \tag{16}
\end{align*}
$$

From relation (11)-(16), we get

$$
\begin{equation*}
\max \left\{d\left(x_{n}, x_{k+1}, d\left(y_{n}, y_{k+1}\right)\right)\right\} \leq \frac{1}{2}(\epsilon-\varphi(\epsilon))+\varphi(\epsilon)+\frac{1}{2}(\epsilon-\varphi(\epsilon))<\epsilon . \tag{17}
\end{equation*}
$$

Thus (11) holds for $m=k+1$. Thus (11) holds for all $m \geq n \geq n_{0}$. Thus $\left(x_{n}\right)$ and (y_{n}) are Cauchy sequences in A and B respectively. Since (X, d) is complete, there exist $u, v \in X$ such that

$$
\lim _{n \rightarrow+\infty} x_{n}=u
$$

and

$$
\lim _{n \rightarrow+\infty} y_{n}=v
$$

Since A and B are closed, we get $u \in A$ and $v \in B$.
Letting $n \rightarrow+\infty$ in

$$
d\left(x_{n+1}, F\left(x_{n}, y_{n}\right)\right)=d(A, B)
$$

and using the continuity of F, we get

$$
d(u, F(u, v))=d(A, B) .
$$

Similarly, we get

$$
d(v, F(v, u))=d(A, B)
$$

Thus, (u, v) is a best proximity coupled point of F. Now, we show that $u=v$. Using the (P)-property of pair (A, B), we get

$$
d(u, v)=d(F(u, v), F(v, u)) .
$$

Using inequality (7), we get

$$
\begin{aligned}
& d(u, v)=d(F(u, v), F(v, u)) \\
\leq & \varphi(\max \{d(u, v), d(v, u)\})+\theta(d(v, F(u, v))-d(A, B), \\
& d(u, F(v, u))-d(A, B), d(u, F(u, v))-d(A, B), d(v, F(v, u))-d(A, B)) \\
= & \varphi(d(u, v))+\theta(d(v, F(u, v))-d(A, B), d(u, F(v, u))-d(A, B), 0,0) \\
= & \varphi(d(u, v)) .
\end{aligned}
$$

Since $\varphi(t)<t$ for all $t>0$, we conclude that $d(u, v)=0$. Thus $u=v$.
To prove the uniqueness of the best proximity coupled point of F, we assume that w is another best proximity coupled point of F; that is, $d(u, F(u, u))=d(A, B)$ and $d(w, F(w, w))=d(A, B)$. Using the (P)-property of pair (A, B), we get $d(u, w)=d(F(u, u), F(w, w))$. Now using (7), we get

$$
\begin{aligned}
& d(u, w)=d(F(u, u), F(w, w)) \\
\leq & \varphi(d(u, w))+\theta(d(w, F(u, u))-d(A, B), \\
& d(w, F(u, u))-d(A, B), d(u, F(u, u))-d(A, B), d(u, F(u, u))-d(A, B)) \\
= & \varphi(d(u, v))+\theta(d(w, F(u, u))-d(A, B), d(w, F(u, u))-d(A, B), 0,0) \\
= & \varphi(d(u, w)) .
\end{aligned}
$$

Again, since $\varphi(t)<t$ for all $t>0$, we conclude that $d(u, w)=0$. Thus $u=w$.

Define $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ via $\varphi(t)=k t$, where $k \in[0,1)$ and

$$
\theta:[0,+\infty)^{4} \rightarrow[0,+\infty), \quad \theta\left(t_{1}, t_{2}, t, 3, t_{4}\right)=L \min \left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}
$$

for some $L \geq 0$. The following results are corollaries of Theorem 3.6.
Corollary 3.7. Let A and B be two closed subsets of a complete metric space (X, d) for which A_{0} and B_{0} are nonempty. Let $F: X \times X \rightarrow X$ be a continuous mapping which satisfies the following conditions:

1) $F\left(A_{0} \times B_{0}\right) \subseteq B_{0}$;
2) $F\left(B_{0} \times A_{0}\right) \subseteq A_{0}$;
3) The pair (A, B) has the (P)-property.

Also, suppose there exist $k \in[0,1)$ and $L \geq 0$ such that

$$
\begin{aligned}
& d(F(x, y), F(u, v)) \\
\leq \quad & k \max \{d(x, u), d(y, v)\}+L \min \{d(u, F(x, y))-d(A, B), d(v, F(y, x))-d(A, B), \\
& d(x, F(x, y))-d(A, B), d(y, F(y, x))-d(A, B)\}
\end{aligned}
$$

holds for all $x, y, u, v \in X$ Then, there exists a unique best proximity coupled point of F of the form (u, u).
Take $B=A$ in Theorem 3.6, we have the following result.
Corollary 3.8. Let A a closed subsets of a complete metric space (X, d). Let $F: X \times X \rightarrow X$ be a continuous mapping with $F(A \times A) \subseteq A$. Suppose there exists a comparison function φ and $\theta \in \Theta$ such that

$$
\begin{aligned}
& d(F(x, y), F(u, v)) \\
\leq \quad & \varphi(\max \{d(x, u), d(y, v)\})+\theta(d(u, F(x, y)), d(v, F(y, x)), \\
& d(x, F(x, y)), d(y, F(y, x)))
\end{aligned}
$$

holds for all $x, y, u, v \in X$ Then F has a unique coupled fixed point of the form (u, u); that is $F(u, u)=u$.

4. Examples and concluding remark

Now we shall provide an example to substantiate our Theorem 3.2. Function φ which will be used here is a comparison, but not a c-comparison, proving that Theorem 2.6 from the work of Samet [10] cannot be applied in our case.

Example 4.1. Consider

$$
X=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}, \quad A=\left\{0, \frac{1}{2}, \frac{1}{4}, \ldots\right\}, \quad B=\left\{0, \frac{1}{3}, \frac{1}{5}, \ldots\right\} .
$$

We endow X with the metric

$$
d: X \times X \rightarrow X, \quad d(x, y)= \begin{cases}0, & \text { if } x=y \\ \max \{x, y\}, & \text { if } x \neq y\end{cases}
$$

Let $T: X \rightarrow X, T x=\frac{x}{1+x}, \theta:[0,+\infty)^{4} \rightarrow[0,+\infty), \theta(t, s, u, v)=\inf \{t, s, u, v\}$, and $\varphi:[0,+\infty) \rightarrow[0,+\infty)$, $\varphi t=\frac{t}{1+t}$. Then

1. $T A_{0} \subseteq B_{0}$.
2. Pair (A, B) has the (P)-property.
3. T is an almost (φ, θ)-contraction.

Proof. Here, $A_{0}=\{0\}, B_{0}=\{0\}$ and $d(A, B)=0$. So the proofs of (1) and (2) are clear.
We spill the proof of (3) into three cases.
CASE 1. $x=\frac{1}{n}, y=\frac{1}{m}, n<m$ and n, m are even (the situation $n>m$ is similar to this one).
We obtain

$$
\begin{aligned}
& \varphi\left(d\left(\frac{1}{n}, \frac{1}{m}\right)\right)+\theta\left(d\left(\frac{1}{m}, \frac{1}{n+1}\right), d\left(\frac{1}{n}, \frac{1}{m+1}\right), d\left(\frac{1}{n}, \frac{1}{n+1}\right), d\left(\frac{1}{m}, \frac{1}{m+1}\right)\right) \\
= & \varphi\left(\frac{1}{n}\right)+\theta\left(\frac{1}{n+1}, \frac{1}{n}, \frac{1}{n}, \frac{1}{m}\right) \\
= & \frac{1}{n+1}+\frac{1}{m} \\
\geq & \frac{1}{n+1}=d\left(\frac{1}{n+1}, \frac{1}{m+1}\right) \\
= & d\left(T \frac{1}{n}, T \frac{1}{m}\right),
\end{aligned}
$$

so the almost (φ, θ)-contraction inequality is satisfied.
Case 2. $x=y=0$. This case is straightforward.
CASE 3. $x=0$, and $y=\frac{1}{m}$, where m is even (which is similar to $y=0$, and $x=\frac{1}{m}$).
We get

$$
\begin{aligned}
d\left(0, T \frac{1}{m}\right) & =d\left(0, \frac{1}{m+1}\right)=\frac{1}{m+1} \\
& \leq \varphi\left(\frac{1}{m}\right)=\varphi\left(d\left(0, \frac{1}{m}\right)\right) \\
& \leq \varphi\left(d\left(0, \frac{1}{m}\right)\right)+\theta\left(d\left(\frac{1}{m}, 0\right), d\left(\frac{1}{m}, 0\right), d(0,0), d\left(\frac{1}{m}, \frac{1}{m+1}\right)\right)
\end{aligned}
$$

Therefore, T is an almost (φ, θ)-contraction. This end the proof of part (3).
By using Theorem 3.2, we conclude that T has a best proximity point in $A, x^{*}=0$.

Example 4.2. Let $X=\{0,2,3,4,5\}$, define a metric $d: X \times X \rightarrow X$ by $d(x, y)=\frac{1}{2}|x-y|$. Take $A=\{0,3\}$ and $B=\{2,4,5\}$. Define a mapping $T: A \rightarrow B$ by $T 0=5$ and $T 3=4$. Also, define $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ by $\varphi(t)=\frac{t}{1+t}$ and $\theta:[0,+\infty)^{4} \rightarrow[0,+\infty)$, by $\theta\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\inf \left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$. Then

1. $T A_{0} \subseteq B_{0}$.
2. Pair (A, B) has the weak (P)-property.
3. T is a generalized almost (φ, θ)-contraction.

Proof. Here $A_{0}=\{3\}, B_{0}=\{2,4\}$ and $d(A, B)=\frac{1}{2}$. Thus $T A_{0} \subseteq B_{0}$. To prove that (A, B) has the weak P-property, let $d\left(x_{1}, y_{1}\right)=d(A, B)$ and $d\left(x_{2}, y_{2}\right)=d(A, B)$. Then $d\left(x_{1}, y_{1}\right)=\frac{1}{2}$ and $d\left(x_{2}, y_{2}\right)=\frac{1}{2}$. Thus $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in\{(3,2),(3,4)\}$. Therefore $d\left(x_{1}, x_{2}\right)=0 \leq d\left(y_{1}, y_{2}\right)$. Hence pair (A, B) has the weak (P)property. To prove (3), let $x, y \in A$. We have only the following cases:

Case 1: $x=y$. Here $d(T x, T y)=0$ and hence

$$
\begin{gathered}
d(T x, T y) \leq \quad \varphi(d(x, y))+\theta(d(y, T x)-d(A, B), d(x, T y)-d(A, B) \\
d(x, T x)-d(A, B), d(y, T y)-d(A, B)) .
\end{gathered}
$$

Case 2: $x \neq y$. Here $(x=0 \wedge y=3) \bigvee(x=3 \wedge y=0)$. Without loss of generality, we assume $x=1$ and $y=3$. and hence

$$
\begin{aligned}
d(T 0, T 3)= & d(5,4)=\frac{1}{2} \\
= & \varphi(1) \\
\leq & \varphi(d(0,3)) \\
\leq & \varphi(d(x, y))+\theta(d(y, T x)-d(A, B), d(x, T y)-d(A, B) \\
& d(x, T x)-d(A, B), d(y, T y)-d(A, B))
\end{aligned}
$$

Thus T is a generalized almost (φ, θ)-contraction. By Theorem 3.2 , we conclude that T has a unique best proximity point in A. Here $x^{*}=3$ is the best proximity point of T.

Remark 4.3. Theorem 2.6 of [10] is a special case of our result Theorem 3.2.

References

[1] M. A. Al-Thafai, N. Shahzad, Convergence and existence for best proximity points, Nonlinear Analysis 70 (2009), 3665-3671.
[2] A. A. Eldered, P. Veeramani, Proximal pointwise contraction, Topology and Applications 156(18) (2009) 2942-2948.
[3] A. A. Eldered, P. Veeramani, Convergence and existence for best proximity points, Journal of Mathematical Analysis and Applications 323(2) (2006), 1001-1006.
[4] S. Karpagam, S. Agrawal, Best proximity points for cyclic Meir-Keeler contraction maps, Nonlinear Analysis 74(4) (2011) 10401046.
[5] W. A. Kirk, S. Reich, and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numerical Functional Analysis and Optimization 24(7-8) (2003) 851-862.
[6] V. Sankar Raj, P. Veeramani, Best proximity pair theorems for relatively nonexpansive mappings, Applied General Topolgy 10, 2009, 21-28.
[7] W. Shatanawi, S. Manro, Fixed point results for cyclic (ϕ, ψ, A, B)-contraction in partial metric spaces, Fixed Point Theory and Applications Volume 2012 Article Number 165.
[8] C. Vetro, Best proximity points, convergence and existence theorems for p-cyclic mappings, Nonlinear Anlysis 73(7) (2010) 2283-2291.
[9] V. Sankar Raj, A best proximity point theorem for weakly contractive non-self mappings, Nonlinear Analysis 74(14) (2011) 4804-4808.
[10] B. Samet: Some results on best proximity points, Journal of Optimization Theory and Applications, 159(1) (2013) 281-291.
[11] A. Akbar, M. Gabeleh, Global optimal solutions of noncyclic mappings in metric spaces, Journal of Optimization Theory and Applications 153 (2012) 298-305.
[12] I. Altun, Ö. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology and Applications 159 (2012) 2642-2648
[13] V. Berinde, Approximating fixed points of weak ϕ-contractions using the Picard iteration, Fixed Point Theory and Applications, bf 4 (2) (2003) 131-142.
[14] R. H. Haghi, M. Postolache, Sh. Rezapour, On T-stability of the Picard iteration for generalized phi-contraction mappings, Abstract and Applied Analysis, Volume 2012 Article Number 658971.
[15] M. Păcurar, Remark regarding two classes of almost contractions with unique fixed point, Creative Mathematics and Informatics 19 (2) (2010) 178-183.
[16] B. Samet, and C. Vetro, Berinde mappings in orbitally complete metric space, Chaos Solitons and Fractals 44 (12) (2011) 1075-1079.
[17] W. Sintunavarat, P. Kumam, Weak condition for generalized multi-valued (f, α, β)-weak contraction mappings, Applied Mathematics Letters 24 (4) (2011) 460-465.
[18] W. Shatanawi, Some fixed point results for a generalized ψ-weak contraction mappings in orbitally metric spaces, Chaos, Solitons and Fractals 45 (2012) 520-526.
[19] W. Shatanawi, A. Al-Rawashdeh, Common fixed points of almost generalized (ψ, ϕ)-contractive mappings in ordered metric spaces, Fixed Point Theory and Applications Volume 2012 Article Number 80.
[20] W. Shatanawi, M. Postolache, Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory and Applications Volume 2013 Article Number 54.

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25.
 Keywords. Best proximity point; almost contraction; best proximity coupled point; metric spaces.
 Received: 20 November 2014; Accepted: 17 January 2015
 Communicated by Dragan S. Djordjević
 Email addresses: wshatanawi@yahoo.com (Wasfi Shatanawi), arianapitea@yahoo.com (Ariana Pitea)

